
SPARROW+CP3 and SPARROWTORISS

Adrian Balint
Universität Ulm, Germany

Norbert Manthey
Knowledge Representation and Reasoning,

TU Dresden, Germany

Abstract—SPARROW+CP3 and SPARROWTORISS are using
as a first step the preprocessor CP3 to simplify the formula
in a way that is beneficial for SLS solvers. SPARROW+CP3
then uses the solver SPARROW to solve the simplified problem.
SPARROWTORISS is first trying to solve the problem with
Sparrow, limiting its execution to 5 ·108 flips and then passes the
assignment found to the CDCL solver RISS3G, which uses this
information for initialization and then tries to solve the problem.
The solver RISS3G combines the improved Minisat-style solving
engine of GLUCOSE 2.2 with a state-of-the-art preprocessor
COPROCESSOR and adds further modifications to the search
process. The SLS solver SPARROW is an improved version of
SPARROW 2011

I. INTRODUCTION

SLS solvers showed remarkable performance on the sat-
isfiable crafted problems in the competitions from the last
years. Motivated by this results we have analyzed in [1] the
utility of different preprocessing techniques for the SLS solver
SPARROW. The best found technique together with SPARROW
represents the basis of our solver SPARROW+CP3.

As SPARROW is not able to prove the unsatisfiability of
a problem we have decided to append a CDCL solver to
SPARROW+CP3, namely RISS3G after limiting the execution
of SPARROW to 5·108 flips. The CDCL solver RISS3G uses the
MINISAT search engine [2], more specifically the extensions
added in GLUCOSE 2.2 [3], [4]. Furthermore, RISS3G is
equipped with the preprocessor COPROCESSOR(CP3) [5], that
implements most of the recently published formula simplifi-
cation techniques, ready to be used as inprocessing as well.

II. MAIN TECHNIQUES

SPARROW is a clause weighting SLS solvers that uses
promising variables and probability distribution based selec-
tion heuristics. It is described in detail in [6]. Compared to the
original version, the one submitted here is updating weights of
unsatisfied clauses in every step where no promising variable
can be found.

The built-in preprocessor CP3 has been ported from CO-
PROCESSOR 2 and supports the following simplification tech-
niques: Unit Propagation, Subsumption, Strengthening (also
called self-subsuming resolution) – where for small clauses
all subsuming resolvents can be produced, (Bounded) Variable
Elimination (BVE) [7] combined with Blocked Clause Elim-
ination (BCE) [8], (Bounded) Variable Addition (BVA) [9],
Probing [10], Covered Clause Elimination [11], Hidden Tau-
tology Elimination [12], Equivalent Literal Elimination [13],
Unhiding (Unhide) [14], Add Binary Resolvents [15], at-most-
one rewriting [16], [17], a 2SAT algorithm [18], and a walksat

implementation [19]. The preprocessor furthermore supports
parallel subsumption, strengthening and variable elimination,
which is described in [20].

RISS3G uses GLUCOSE 2.2 as main search engine – the
version used in SPARROWTORISS just replaces the internal
preprocessor with CP3.

The combination of the SPARROW and RISS3G, called
SPARROWTORISS, does not simply execute the two solvers
after each other, but also forwards information from the SLS
solver to the CDCL solver: when SPARROW terminates, it
outputs its last full assignment in chronological order (i.e.
the oldest variable first), which is used to initialize the phase
saving of RISS3G, such that the first decisions of RISS3G
follow this assignment. In a brief empirical evaluation this
communication turned out to be useful. The solvers are also
able to forward the information about the age of the variables
in the SLS search. This data could be used to initialize the
activities of the variables inside RISS3G. However, this feature
is not enabled in the used configuration.

III. MAIN PARAMETERS

SPARROW is using the same parameters as SPARROW 2011.
The configuration of CP3 has been tuned for SPARROW

in [1] on the SAT Challenge 2012 satisfiable hard combinato-
rial benchmarks.

The main parameters of RISS3G control how the formula
simplification of CP3 is executed. The configuration of CP3
has been tuned for GLUCOSE 2.2 in [1] on the SAT Chal-
lenge 2012 application benchmark. The final setup of the
preprocessor inside RISS3G uses the following techniques:
UP, SUB+STR (producing all resolvents for ternary clauses),
Unhide without hidden literal elimination [14] and 5 iterations,
BVE without on the fly BCE and BVA with a small number
of 120000 steps.

For SPARROWTORISS it can be chosen whether to forward
the last assignment, or the activity information.

IV. IMPLEMENTATION DETAILS

SPARROW is implemented in C. The solver RISS3G is build
on top of MINISAT 2.2 and GLUCOSE 2.2. Furthermore, we
integrated COPROCESSOR into the system, allowing inprocess-
ing techniques to be executed during search – however, this
feature is not used in the competition. All solvers have been
compiled with the GCC C++compiler as 64 bit binaries.

V. AVAILABILITY

The source code of RISS3G (including CP3) is available at
tools.computational-logic.org for research purposes.

tools.computational-logic.org


ACKNOWLEDGMENT

The authors would like to thank Armin Biere for many
helpful discussions on formula simplification and the BWGrid
[21] project for providing computational resources to tune
CP3. This project was partially funded by the Deutsche
Forschungsgemeinschaft (DFG) under the number SCHO
302/9-1. Finally, the authors would like to thank TU Dresden
for providing the computational resources to develop, test and
evaluate RISS3G.

REFERENCES

[1] A. Balint and N. Manthey, “Boosting the Performance of SLS and CDCL
Solvers by Preprocessor Tuning,” in Pragmatics of SAT, 2013.

[2] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, ser. Lecture
Notes in Computer Science, E. Giunchiglia and A. Tacchella, Eds., vol.
2919. Springer, 2003, pp. 502–518.

[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proc. 21st Int. Joint Conf. on Artifical Intelligence
(IJCAI ’09). Morgan Kaufmann, 2009, pp. 399–404.

[4] ——, “Refining restarts strategies for sat and unsat,” in Proceedings
of the 18th international conference on Principles and Practice of
Constraint Programming, ser. CP’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 118–126. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-33558-7 11

[5] N. Manthey, “Coprocessor 2.0: a flexible cnf simplifier,” in Proceedings
of the 15th international conference on Theory and Applications of
Satisfiability Testing, ser. SAT’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 436–441. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-31612-8 34

[6] A. Balint and A. Fröhlich, “Improving stochastic local search for sat with
a new probability distribution,” in Proceedings of the 13th international
conference on Theory and Applications of Satisfiability Testing,
ser. SAT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 10–15.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-14186-7 3

[7] N. Eén and A. Biere, “Effective preprocessing in sat through variable
and clause elimination,” in Proceedings of the 8th international
conference on Theory and Applications of Satisfiability Testing,
ser. SAT’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 61–75.
[Online]. Available: http://dx.doi.org/10.1007/11499107 5

[8] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proceedings of the 16th international conference on Tools and
Algorithms for the Construction and Analysis of Systems, ser.
TACAS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 129–144.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12002-2 10

[9] N. Manthey, M. J. H. Heule, and A. Biere, “Automated reencoding
of boolean formulas,” in Proceedings of Haifa Verification Conference
2012, 2012.

[10] I. Lynce and J. Marques-Silva, “Probing-Based Preprocessing
Techniques for Propositional Satisfiability,” in Proceedings of the 15th
IEEE International Conference on Tools with Artificial Intelligence,
ser. ICTAI ’03. IEEE Computer Society, 2003, pp. 105–110. [Online].
Available: http://portal.acm.org/citation.cfm?id=951951.952290

[11] M. Heule, M. Järvisalo, and A. Biere, “Covered clause elimination,”
CoRR, vol. abs/1011.5202, 2010.

[12] M. Heule, M. Järvisalo, and A. Biere, “Clause elimination procedures
for cnf formulas,” in Proceedings of the 17th international conference
on Logic for programming, artificial intelligence, and reasoning, ser.
LPAR’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 357–371.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1928380.1928406

[13] A. V. Gelder, “Toward leaner binary-clause reasoning in a satisfiability
solver,” Ann. Math. Artif. Intell., vol. 43, no. 1, pp. 239–253, 2005.

[14] M. J. H. Heule, M. Järvisalo, and A. Biere, “Efficient cnf simplification
based on binary implication graphs,” in Proceedings of the 14th
international conference on Theory and application of satisfiability
testing, ser. SAT’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 201–215. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2023474.2023497

[15] W. Wei and B. Selman, “Accelerating random walks,” in Proceedings
of the 8th International Conference on Principles and Practice of
Constraint Programming, ser. CP ’02. London, UK, UK: Springer-
Verlag, 2002, pp. 216–232. [Online]. Available: http://dl.acm.org/
citation.cfm?id=647489.727142

[16] N. Manthey and P. Steinke, “Quadratic Direct Encoding vs. Linear Order
Encoding,” in First International Workshop on the Cross-Fertilization
Between CSP and SAT(CSPSAT’11), 2011.

[17] M. N. V. Van Hau Nguyen and S. Hölldobler, “Application of hierarchi-
cal hybrid encoding to efficient translation of a csp to sat,” Knowledge
Representation and Reasoning Group, Technische Universität Dresden,
01062 Dresden, Germany, Tech. Rep., 2013.

[18] A. del Val, “On 2-sat and renamable horn,” in AAAI/IAAI, H. A. Kautz
and B. W. Porter, Eds. AAAI Press / The MIT Press, 2000, pp. 279–
284.

[19] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for improving
local search,” in AAAI, B. Hayes-Roth and R. E. Korf, Eds. AAAI
Press / The MIT Press, 1994, pp. 337–343.

[20] K. Gebhardt and N. Manthey, “Parallel Variable Elimination on CNF
Formulas,” in Pragmatics of SAT, 2013.

[21] bwGRiD (http://www.bw grid.de/), “Member of the german d-grid ini-
tiative, funded by the ministry of education and research (bundesminis-
terium für bildung und forschung) and the ministry for science, research
and arts baden-wuerttemberg (ministerium für wissenschaft, forschung
und kunst baden-württemberg),” Universities of Baden-Württemberg,
Tech. Rep., 2007-2010.

http://dx.doi.org/10.1007/978-3-642-33558-7_11
http://dx.doi.org/10.1007/978-3-642-33558-7_11
http://dx.doi.org/10.1007/978-3-642-31612-8_34
http://dx.doi.org/10.1007/978-3-642-31612-8_34
http://dx.doi.org/10.1007/978-3-642-14186-7_3
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/978-3-642-12002-2_10
http://portal.acm.org/citation.cfm?id=951951.952290
http://dl.acm.org/citation.cfm?id=1928380.1928406
http://dl.acm.org/citation.cfm?id=2023474.2023497
http://dl.acm.org/citation.cfm?id=2023474.2023497
http://dl.acm.org/citation.cfm?id=647489.727142
http://dl.acm.org/citation.cfm?id=647489.727142

	Introduction
	Main Techniques
	Main Parameters
	Implementation details
	Availability
	References

